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Simulated annealing is used to solve the Sayre equation formulated as a

minimization problem. Trial calculations for structures containing up to 126 non-

H equal atoms have been carried out. The residual as a function of the ®ctitious

temperature always exhibits a sudden drop before the emergence of the correct

structure at low temperature. This behavior casts doubt on the suitability of

solving the Sayre equation by steepest-descent methods.

1. Introduction

Sayre's equation (Sayre, 1952) has played a prominent role in

the development of direct methods. Most of the current

methods of choice are, however, based on the tangent formula,

which corresponds to only the phase part of the Sayre equa-

tion. There have been relatively few attempts to solve the

Sayre equation directly for determining structures.

In this work, we seek to solve a system of Sayre equations

by minimizing a residual formed from the equations. To avoid

being trapped in local minima, simulated annealing is used for

the minimization. It turns out that such an annealing proce-

dure is essential for obtaining the correct structures. This

insight discourages the use of steepest-descent methods for

minimization.

To illustrate the points, we have carried out trial calcula-

tions involving two space groups, P�1 and P212121. We used

known structures and fabricated data. For P�1, we have been

able to solve a structure containing 126 equal atoms. For

P212121, we have been limited to smaller structures because of

computer time. The method is very straightforward and can be

used as an an alternate direct method.

2. Methodology

The following is a system of Sayre equations:

F�h� � �Kf �h�=g�h��P
k

F�k�F�hÿ k�; �1�

where f �h� and g�h� are the scattering factors for the normal

and square-density atoms, respectively, and K is an overall

scaling constant.

A simple residual for the above set of equations is

R �P
h

jF�h� ÿ K� f �h�=g�h��G�h�j2

G�h� �P
k

F�k�F�hÿ k�: �2�

Minimization of the residual (Debaerdemaeker et al., 1985;

Woolfson & Fan, 1995) with respect to the phases of the

structure factors F�k� leads to solution of the original set of

equations in (1). Owing to the possible existence of false

minima, the simulated-annealing algorithm (Kirkpatrick et al.,

1983) is employed for the minimization procedure. Although

the summation in (2) may extend over all available re¯ections,

it is suf®cient to include only strong re¯ections. In general, K

Figure 1
A ¯ow chart of the phase-annealing procedure.
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in (2) should be treated as another variational parameter. To

slightly simplify the calculations, we have preset K at the value

that optimizes R for the correct structure. The results to be

described below are not very sensitive to the value of K.

As in a typical simulated-annealing (Press et al., 1992)

procedure, one starts with a certain choice of the initial values

of the phases at a high temperature. Speci®cally, in our

algorithm, these phases are derived from a trial structure. A

single phase is updated each time according to the Metropolis

algorithm (Metropolis et al., 1953). More precisely, the change

in residual �R due to a move from the present value of the

phase to another possible value is checked. If �R < 0, then

the move is accepted. If �R > 0, the probability exp�ÿ�R=T�
is compared with a random number � between 0 and 1: if

� < exp�ÿ�R=T�, the move is accepted, otherwise the phase

retains its old value. This is similar to the update of atomic

coordinates in a real-space approach (Su, 1995; Giacovazzo,

1998).

At any temperature T, each phase is updated a suf®cient

number of times to ensure thermal equilibrium. The

temperature is decreased suf®cently slowly (reduced by 10%

each step) so that hopefully the residual can reach

its true minimum at the end of the annealing

procedure. In any event, the result at the lowest

temperature is examined by looking at the elec-

tron-density peaks derived from the phases to see

if the structure makes sense or not. If it does not,

one repeats the cycle by raising and lowering the

temperature again. The starting phases of the new

cycle are generated from the spatially ®ltered

low-temperature con®guration of the previous

cycle. Many cycles may be needed for a sensible

structure to emerge. A schematic ¯ow diagram is

depicted in Fig. 1.

In the following, we report on several trial

calculations. The centrosymmetric structures are

easier to solve because there are only two

possible values for each phase, therefore it takes

much less time to sample the phase con®gura-

tions.

3. Examples

3.1. (trans-syn-cis)-Tetramethyl rac-(1S, 2S, 7R, 10R)-(8Z)-1-
(4-bromobenzoyloxymethyl)tricyclo[8.5.0.02,7]pentadec-8-
ene-5,5,13,13-tetracarboxylate ethanol solvate
(3C31H37BrO10 � 0.76C2H6O)

The original structure (Drouin et al., 1997) (Fig. 2) contains

129 non-H atoms in the molecule (compound 1). We discard

the heavy atoms, the remaining 126 non-H atoms are modeled

by a Gaussian density exp�ÿ�r=a�2�, where a � 0:5 AÊ . The unit-

cell size and symmetry (P�1) are retained. Details of the crystal

data are listed in Table 1. The 884 strongest independent

re¯ections are picked from the synthetic data of 0:9 AÊ reso-

lution. Although this data set is only a small fraction of the

total number of re¯ections, it is suf®cient to ensure that the

correct structure does minimize the cost function.

For each temperature, we update the phases sequentially,

i.e. from the ®rst phase to the last phase (a single sweep). 40

sweeps per temperature are made. A typical plot of the resi-

dual versus temperature (the annealing curve) is shown in

Fig. 3(a). The residual settles around 11 000 at low tempera-

Figure 2
Stereoview of the structure of compound (1).

Table 1
Crystal data for the structures studied.

Compound (1) Compound (2) Compound (3) Compound (4)

Space group P�1 P�1 P�1 P212121

No. of non-H atoms 129 92 62 45
Cell setting Triclinic Triclinic Triclinic Orthorhombic
Z 2 2 2 4
a (AÊ ) 13.549 12.533 8.221 10.749
b (AÊ ) 15.413 12.649 16.245 13.068
c (AÊ ) 24.490 25.319 17.337 22.643
� (�) 79.073 84.79 81.694 90
� (�) 75.749 80.74 89.656 90
 (�) 70.254 83.84 86.468 90
Range of h,k,l ÿ15!h!16 ÿ13!h!13 ÿ10!h!10 0!h!13

0!k!18 ÿ13!k!13 0!k!19 0!k!17
ÿ28!l!29 ÿ20!l!27 ÿ20!l!22 0!l!29



ture. Examination of the low-temperature density con®gura-

tion reveals no resemblance to the actual structure. After 50

cycles, a distinct annealing curve is spotted, as shown in

Fig. 3(b). A dramatic decrease of the residual at temperature

T around 10 leads to a distinctly low residual (7500) and the

correct structure.

The entire calculation above took about one week of CPU

time on a Digital 500 MHz Alpha Workstation.

3.2. Alkyl calix[4]resorcinarene (C72H112O8 � 4C2H6O)

Again, we replace the actual structure (Hibbs et al., 1998) by

92 identical Gaussians (compound 2) (Fig. 4). The space group

is P�1. The 679 strongest independent re¯ections are used in

the simulation. The structure emerges below temperature

T � 10 after 40 cycles. The entire calculation took about two

days on the same machine above.

3.3. Adduct of cyclam with 1,1,1-tris(4-hydroxyphenyl)-
ethane methanol solvate (2C20H18O3 � C10H24N4 � CH4O)

In the same fashion, we drop the H atoms and replace the

C atoms, N atoms and O atoms in the original structure

(Ferguson et al., 1998) by identical Gaussians (compound 3).

The unit cell shares the same space group and Z � 2 as in the

above examples. 465 re¯ections are used. Eight cycles took a

few hours and yielded the correct solution. To gain an insight

into the nature of the phase-transition-like behavior of the

annealing curve (Fig. 5), we examine some typical molecular

con®gurations corresponding to the points Tb, Tm and Ta in

Fig. 5. Each con®guration is represented by the 124 highest

peaks of the electron-density function in the unit cell with an

interpeak separation larger than 0:6 AÊ . Con®gurations Tb and

Tm are depicted by dots in Figs. 6(a) and 6(b), respectively.

Con®guration Ta is described by the wire frames in both

®gures. Apart from some minor defects (which disappear at

temperatures below 2), con®guration Ta is essentially indis-

tinguishable from the native structure. Whereas there is a

tendency for the dots to cluster around the correct structure in

con®guration Tb, many of them are locked into the ®nal

correct positions in con®guration Tm. The above result is

rather akin to the formation of a nucleation center above the

melting temperature of an ordinary crystal. With that, the
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Figure 3
(a) A typical annealing (residual versus temperature) curve. (b) A distinct
annealing curve giving rise to the correct structure studied in compound
(1).

Figure 4
Stereodrawing of the molecular structure of compound (2).

Figure 5
An annealing curve of compound (3).
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crystal develops quickly. Without that, the system could easily

be trapped in a glassy metastable state as the temperature

lowers.

3.4. Oxyacanthine (C37H40N2O6)

To ®nd out how the algorithm works for other symmetry

groups, we chose the oxyacanthine (Sivy et al., 1996) molecule

(Fig. 7) in the P212121 space group with Z � 4 (compound 4).

The higher symmetry requires longer summation in the

calculation of the cost function. In addition, the phases can be

continuous. To save time, we have discretized a continuous

phase into integral multiples of �=4. 225 independent re¯ec-

tions are used. Each phase is updated 48 times at each

temperature. The correct solution was found after 70 cycles,

which took about ten days of CPU time. The annealing curve

looks very similar to those in the previous examples.

4. Discussion

Since in most cases the presence of heavy atoms simpli®es the

solution of a structure, we have focused on light-atom struc-

tures in the test of a new method. The method we are

proposing here is a very straightforward

minimization procedure conceptually. In

reality, one is limited by computer time as

the structure gets larger or the symmetry

becomes higher. This dif®culty is related to

the phase-transition-like behavior of the

annealing procedure. Owing to that, the

molecular con®gurational space needs to be

sampled suf®ciently extensively at appro-

priate temperatures so that a sharp drop in

cost function can occur, ensuring the

correctness of the ®nal structure. We note

here that a steepest-descent approach

(Sayre, 1974) corresponds to quenching the

system at zero temperature. According to

our analysis of the thermodynamics of the

annealing procedure, it seems unlikely such

a quench could lead to the correct structure.

The SAYTAN method (Debaerdemaeker et

al., 1985) also involves the minimization of

R in (2) through the derivative of R with

respect to the phases. As such, it might

suffer from a similar problem of being

trapped in a local minimum.

While simulated annealing is applied

speci®cally to solving Sayre's equation in

this paper, we note that it has been

employed to solve the phase problem in

other approaches. In a strictly real-space

(Su, 1995) approach, it is used to minimize

the discrepancy between calculated and

observed intensities with respect to the

atomic coordinates. Sheldrick (1990) has

used it to ®ght the tendency of the tangent

formula to produce overconsistent phase

sets. Bhat (1990) has used it to improve the

phases in a density-modi®cation method.

These are quite distinct applications. It

seems that simulated annealing is slowly

gaining popularity among researchers in

X-ray crystallography.

This work was partially supported by the

Texas Center for Superconductivity and the

Robert A. Welch Foundation.

Figure 6
(a) Stereogram of con®guration Tb superimposed on con®guration Ta in wire frame. (b)
Stereogram of con®guration Tm superimposed on con®guration Ta in wire frame.

Figure 7
Stereograph of the molecular structure of oxyacanthine.
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